(1)如图1,已知△ABC,以边AB、AC为边分别向外作等边三角形ABD和等边三角形ACE,连接CD、BE.求证:⑴CD=BE. (2)如图2,已知△ABC,以边AB、AC为边分别向外作正方形ABFD和正方形ACGE,连接CD、BE,CD与BE有什么数量关系?(直接写结果,不需要过程).(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高。(精确到0.1米) (参考数据:sin43° =0.6820, cos43° =0.7314, tan43° =0.9325)
为响应国家“退耕还林”的号召,改变我省水土流失严重的状况,2005年我省退耕还林1600亩,计划2007年退耕还林1936亩,问这两年平均每年退耕还林的增长率是多少?
解方程:
阅读下面材料,再回答问题: 有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。 解决下列问题: (1)菱形的“二分线”可以是。 (2)三角形的“二分线”可以是。 (3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.
如图,已知直线y =-x+4与反比例函数的图象相交于点A(-2,a),并且与x轴相交于点B。 (1)求a的值; (2)求反比例函数的表达式; (3)求△AOB的面积。