已知二次函数在处取得极值,且在点处的切线与直线平行. (1)求的解析式;(2)求函数的单调递增区间及极值。(3)求函数在的最值。
六个面分别写上1,2,3,4,5,6的正方体叫做骰子。问1) 共有多少种不同的骰子;2) 骰子相邻两个面上数字之差的绝对值叫做这两个面之间的变差,变差的总和叫做全变差V。在所有的骰子中,求V的最大值和最小值。
一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。问:(Ⅰ)某人在这项游戏中最多能过几关?(Ⅱ)他连过前三关的概率是多少?(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。抛掷骰子落地静止后,向上一面的点数为出现点数。)
将编号为1,2,…,9的九个小球随机放置在圆周的九个等分点上,每个等分点上各有一个小球.设圆周上所有相邻两球号码之差的绝对值之和为要S.求使S达到最小值的放法的概率.(注:如果某种放法,经旋转或镜面反射后可与另一种放法重合,则认为是相同的放法)
若函数f(x)=(a>0)在[1,+∞)上的最大值为,求a的值。
已知函数f(x)=x3-2ax2+3x(x∈R).(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.