已知二次函数在处取得极值,且在点处的切线与直线平行. (1)求的解析式;(2)求函数的单调递增区间及极值。(3)求函数在的最值。
已知函数 (Ⅰ)求函数的单调区间; (Ⅱ)若不等式在区间上恒成立,求实数k的取值范围; (Ⅲ)求证:
已知椭圆C的中心在原点,对称轴为坐标轴,且过 (Ⅰ)求椭圆C的方程, (Ⅱ)直线交椭圆C与A、B两点,求证:
已知数列满足 (Ⅰ)求数列的通项; (Ⅱ)若求数列的前n项和
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上D点在AN上,且对角线MN过点C,已知AB=3米,AD=2米。 (Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内? (Ⅱ)当DN 的长度为多少时,矩形花坛AMPN的面积最小?并求出最小值。
已知函数是定义在R上的单调函数,满足,且对任意的实数有恒成立 (Ⅰ)试判断在R上的单调性,并说明理由. (Ⅱ)解关于的不等式,其中