在平面直角坐标系中,点M(,),以点M为圆心,OM长为半径作⊙M ,使⊙M与直线OM的另一交点为点B,与轴,轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.(1)写出∠AMB的度数;(2)点Q在射线OP上,且OP·OQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交轴于点E.①当动点P与点B重合时,求点E的坐标;②连接QD,设点Q的纵坐标为t,△QOD的面积为S,求S与t的函数关系式及S的取值范围.
先化简,再求值:,其中x满足.
如图,在△中,,,垂足为.若,,求△的周长(结果保留根号).
如图,△和△中,,,、相交于点,点、、、在同一直线上,且.求证:.
解方程:.
计算:.