已知等比数列的公比大于1,是数列的前n项和,,且依次成等差数列.(1)求数列的通项公式;(2)若数列满足:,求数列的前n项和
已知函数的周期为.(1)当时,求的取值范围;(2)求函数的单调递减区间.
设数列,满足,,且,(1)求数列的通项公式;(2)对一切,证明成立;(3)记数列,的前项和分别是,证明。
若函数f(x)=ax3+bx2+cx+d是奇函数,且(1)求函数f(x)的解析式;(2)求函数f(x)在[-1,m](m>-1)上的最大值;(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.(1)求函数f(x)的解析式;(2)求函数f(x)在[-1,m](m>-1)上的最大值;(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
设(1)求点的轨迹C的方程;(2)过点的直线交曲线C于A,B两点(A在P,B之间),设直线的斜率为k,当时,求实数的取值范围。