设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.(1)若,求的值;(2)求四边形面积的最大值.
(本题12分) 若椭圆与双曲线有相同的焦点,且椭圆与双曲线交于点,求椭圆及双曲线的方程.
(本题12分) 已知命题;命题表示焦点轴上的椭圆,若,求实数的取值范围.
(本小题满分10分) 如图,已知椭圆C:,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.(I)是否存在,使对任意,总有成立?若存在,求出所有的值;(II)若,求实数的取值范围.
(本题满分10分)已知双曲线C:为C上的任意点.(Ⅰ)求证:点到双曲线C的两条渐近线的距离的乘积是一个常数; (Ⅱ)设点A的坐标为(3,0),求的最小值.
(本题满分8分)已知椭圆C的方程是,直线过右焦点,与椭圆交于两点.(Ⅰ)当直线的倾斜角为时,求线段的长度;(Ⅱ)当以线段为直径的圆过原点时,求直线的方程.