设,而.(1)若最大,求能取到的最小正数值.(2)对(1)中的,若且,求.
(本小题满分12分) 已知等差数列的前n项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前n项和.
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-C的余弦值.
(本小题满分12分)如图所示,正方形和矩形所在平面相互垂直,是的中点. (1)求证:;(2)若直线与平面成45o角,求异面直线与所成角的余弦值.
(本小题满分12分)如图,已知四棱锥P-ABCD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,∠DAB=60°.(1)证明:∠PBC=90°;(2)若PB=3,求直线AB与平面PBC所成角的正弦值.
(本小题满分12分)如图:在三棱锥中,已知点、、分别为棱、、的中点.(1)求证:∥平面;(2)若,,求证:平面⊥平面.