已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.
如图①,△ABC中,,∠ABC=,将△ABC绕点A顺时针旋转得到△AB ¢C ¢,设旋转的角度是. (1)如图②,当=" " °(用含的代数式表示)时,点B ¢恰好落在CA的延长线上; (2)如图③,连结BB ¢、CC ¢, CC ¢的延长线交斜边AB于点E,交BB ¢于点F.请写出图中两对相似三角形 , (不含全等三角形),并选一对证明.
含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转角(且≠ 90°),得到Rt△,边与AB所在直线交于点D,过点 D作DE∥交边于点E,连接BE.(1)如图1,当边经过点B时,= °;(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;(3) 设 BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=时,求AD的长,并判断此时直线与⊙E的位置关系.
已知抛物线(其中a ≠ c且a ≠0).(1)求此抛物线与x轴的交点坐标;(用a,c的代数式表示)(2)若经过此抛物线顶点A的直线与此抛物线的另一个交点为,求此抛物线的解析式;(3)点P在(2)中x轴上方的抛物线上,直线与 y轴的交点为C,若,求点P的坐标; (4)若(2)中的二次函数的自变量x在n≤x<(n为正整数)的范围内取值时,记它的整数函数值的个数为N, 则N关于n的函数关系式为 .
已知关于x的一元二次方程 .(其中m为实数)(1)若此方程的一个非零实数根为k,① 当k = m时,求m的值; ② 若记为y,求y与m的关系式;(2)当<m<2时,判断此方程的实数根的个数并说明理由
请阅读下面材料: 若, 是抛物线(a ≠ 0)上不同的两点,证明直线为此抛物线的对称轴. 有一种方法证明如下:
① ②
证明:∵,是抛物线(a ≠ 0)上不同的两点,