已知关于x的一元二次方程 .(其中m为实数)(1)若此方程的一个非零实数根为k,① 当k = m时,求m的值; ② 若记为y,求y与m的关系式;(2)当<m<2时,判断此方程的实数根的个数并说明理由
如图所示,OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.
请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘: (1)用树状图表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率。
如图,抛物线与直线交于A,C两点,与x轴交于点A,B.点P为直线AC下方抛物线上的一个动点(不包括点A和点C),过点P作PN⊥AB交AC与点M,垂足为N,连接AP,CP.设点P的横坐标为m.(1)求b的值;(2)用含m的代数式表示线段PM的长并写出m的取值范围;(3)求△PAC的面积S关于m的函数解析式,并求使得△APC面积最大时,点P的坐标;(4)直接写出当△CMP为等腰三角形时点P的坐标.
如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.
已知抛物线经过点A (1,0), B(6,0). (1)求抛物线的解析式; (2)当y<0,直接写出自变量x的取值范围.(3)抛物线与y轴交于点D, P是x轴上一点,且△PAD是以AD为腰的等腰三角形,试求P点坐标。