如图,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.
在如图所示的平面直角坐标系中,△OAB的三个顶点坐标分别为O(0,0),A(1,-3),B(3,-2).(1)将△OAB绕原点O逆时针旋转90°,画出旋转后的△OA’ B’;(2)求出点B到点B’ 所走过的路径的长.
已知二次函数y =" ax2" +bx +c中,函数y与自变量x的部分对应值如下表:
(1)求这个二次函数的解析式;(2)写出这个二次函数的顶点坐标
计算:
如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;
在△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;(2) 如果抛物线(a≠0)的对称轴经过点C,请你探究:当,,时,A,B两点是否都在这条抛物线上?并说明理由