已知函数,函数g(x)的导函数,且(1)求的极值;(2)若,使得成立,试求实数m的取值范围:(3)当a=0时,对于,求证:
已知二阶矩阵M有特征值λ=8及对应的一个特征向量=,并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值,及对应的一个特征向量的坐标之间的关系.(3)求直线l:x﹣y+1=0在矩阵M的作用下的直线l′的方程.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量为,求矩阵A.
选修4﹣2:矩阵与变换已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且M对应的变换将点(﹣1,2)变换成(9,15),求矩阵M.
已知矩阵A=[]的一个特征值为2,其对应的一个特征向量为=[].(1)求矩阵A;(2)若A[]=[],求x,y的值.
已知矩阵的一个特征值λ1=3及对应的一个特征向量=.(1)求a,b的值;(2)求曲线C:x2+4xy+13y2=1在M对应的变换作用下的新曲线的方程.