为了估计某产品寿命的分布,对产品进行追踪调查,记录如下:
画出频率分布直方图;(2)估计产品在200~500以内的频率.
已知数列的首项.(1)求证:数列为等比数列;(2)记,若,求最大正整数的值;(3)是否存在互不相等的正整数,使成等差数列,且成等比数列?如果存在,请给予证明;如果不存在,请说明理由.
已知等差数列{}的首项为a.设数列的前n项和为Sn,且对任意正整数n都有.(1)求数列{}的通项公式及Sn;(2)是否存在正整数n和k,使得成等比数列?若存在,求出n和k的值;若不存在,请说明理由.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、.(1)求数列的通项公式;(2)数列的前n项和为,求证:数列是等比数列.
已知向量,(1)求;(2)若的最小值是,求实数的值.
在锐角△ABC中,角A,B,C的对边分别为a,b,c.已知sin(A-B)=cosC.(1)若a=3,b=,求c;(2)求的取值范围.