在△ABC和△DEF中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题.(1)、你认为 和 组合,△ABC和△DEF不一定全等,(2)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示);(3)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC和△DEF全等的概率.
如图,在Rt△ABC中,AC=AB,∠BAC=90°,点O是BC的中点,连结OA.(1)如图1,已知BC=6,则OA=_________.(2)如图2,若点M,N分别在线段AB,AC上移动,在移动中始终保持AN=BM,则△OAN≌△OBM成立吗?并说明理由.(3)如图3,若点M,N分别在线段BA.AC的延长线上移动,在移动中始终保持AN=BM,请判断△OMN的形状,并说明理由.
如图,Rt△ABC中∠B=90°,AC=10cm,BC=6cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点到终点,另一点也随之停止.连结PQ,设动点运动时间为x秒.(1)用含x的代数式表示BQ为________cm,PB为_________cm; (2)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在, 请求出此时x的值;若不存在,请说明理由。
为纪念雷锋同志逝世50周年,某校八年级(1)班准备设立“雷锋爱心基金”,全班学生纷纷捐款,统计捐款数额(均为整数),得到如下频数分布表(部分空格未填).请你思考并回答下列问题:(1)完成频数分布表;(2)画出频数分布折线图;(3)求该班学生的平均捐款数额是多少元?(结果四舍五入到1元).
已知:如图,AB∥CD,AD∥BC.求证:AD=BC.
解方程: