某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售1000件.通过改进工艺,产品的成本不变,质量和技术的含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.设改进工艺后,旅游部门销售该纪念品的月平均利润是(元).(1)当销售价提高的百分率为0.1时,月利润是多少?(2)写出与的函数关系式;(3)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
(本小题满分10分)已知圆C:,直线 (Ⅰ)判断直线与圆的位置关系。 (Ⅱ)若直线与圆交于不同两点,且=,求直线的方程。
(本小题12分)已知函数,函数的最小值为. (Ⅰ)求; (Ⅱ)是否存在实数,,同时满足以下条件:①;②当的定义域为时,值域为.若存在,求出,的值;若不存在,说明理由.
(本小题12分)已知函数的定义域是R,对任意实数x,y,均有,且当时,. (Ⅰ)证明:在R上是增函数; (Ⅱ)判断的奇偶性,并证明; (Ⅲ)若,求不等式的解集.
(本小题12分)已知函数,. (Ⅰ)求函数g(x)的值域; (Ⅱ)解方程:.
(本小题12分)已知函数. (Ⅰ)判断的奇偶性,并证明; (Ⅱ)求使的的取值范围.