在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{bn}满足bn=an+1+log2an(n=1,2,3,…),求数列{bn}的前n项和Sn.
从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率. (1)求从该批产品中任取1件是二等品的概率; (2)若该批产品共100件,从中任意抽取2件,表示取出的2件产品中二等品的件数,求的分布列.
某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则 即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、、、,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示)
某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手被淘汰的概率; (Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数数期望.(注:本小题结果可用分数表示)
已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为红球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率;
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率; (Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.