如图,矩形ABCD的对角线AC、BD相交于点O,DE∥AC,CE∥BD.(1)求证:四边形OCED为菱形;(2)连接AE、BE,AE与BE相等吗?请说明理由.
已知:如图,点 A , F , E , C 在同一直线上, AB / / DC , AB = CD , ∠ B = ∠ D .
(1)求证: ΔABE ≅ ΔCDF ;
(2)若点 E , G 分别为线段 FC , FD 的中点,连接 EG ,且 EG = 5 ,求 AB 的长.
如图,在 Rt Δ ABC 中, ∠ C = 90 ° , AC = BC = 4 cm ,动点 P 从点 C 出发以 1 cm / s 的速度沿 CA 匀速运动,同时动点 Q 从点 A 出发以 2 cm / s 的速度沿 AB 匀速运动,当点 P 到达点 A 时,点 P 、 Q 同时停止运动,设运动时间为 t ( s ) .
(1)当 t 为何值时,点 B 在线段 PQ 的垂直平分线上?
(2)是否存在某一时刻 t ,使 ΔAPQ 是以 PQ 为腰的等腰三角形?若存在,求出 t 的值;若不存在,请说明理由;
(3)以 PC 为边,往 CB 方向作正方形 CPMN ,设四边形 QNCP 的面积为 S ,求 S 关于 t 的函数关系式.
如图,已知直线 y = − 2 x + 4 分别交 x 轴、 y 轴于点 A 、 B ,抛物线过 A , B 两点,点 P 是线段 AB 上一动点,过点 P 作 PC ⊥ x 轴于点 C ,交抛物线于点 D .
(1)若抛物线的解析式为 y = − 2 x 2 + 2 x + 4 ,设其顶点为 M ,其对称轴交 AB 于点 N .
①求点 M 、 N 的坐标;
②是否存在点 P ,使四边形 MNPD 为菱形?并说明理由;
(2)当点 P 的横坐标为1时,是否存在这样的抛物线,使得以 B 、 P 、 D 为顶点的三角形与 ΔAOB 相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
一名在校大学生利用“互联网 + ”自主创业,销售一种产品,这种产品的成本价10元 / 件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元 / 件,市场调查发现,该产品每天的销售量 y (件 ) 与销售价 x (元 / 件)之间的函数关系如图所示.
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;
(2)求每天的销售利润 W (元 ) 与销售价 x (元 / 件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
如图, ⊙ O 是 ΔABC 的外接圆, AB 为直径, ∠ BAC 的平分线交 ⊙ O 于点 D ,过点 D 作 DE ⊥ AC 分别交 AC 、 AB 的延长线于点 E 、 F .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 AC = 4 , CE = 2 ,求 BD ̂ 的长度.(结果保留 π )