如图所示,平面平面,且四边形为矩形,四边形为直角梯形,,,,.(1)求证平面;(2)求平面与平面所成锐二面角的余弦值.
平面图形 A B B 1 A 1 C 1 C 如图所示,其中 B B 1 C 1 C 是矩形, B C = 2 , B B 1 = 4 , A B = A C = 2 , A 1 B 1 = A 1 C 1 = 5 。现将该平面图形分别沿 B C 和 B 1 C 1 折叠,使 △ A B C 与 △ A 1 B 1 C 1 所在平面都与平面 B B 1 C 1 C 垂直,再分别连接 A A 1 , B A 1 , C A 1 ,得到如图2所示的空间图形,对此空间图形解答下列问题
(Ⅰ)证明: A A 1 ⊥ B C ; (Ⅱ)求 A A 1 的长; (Ⅲ)求二面角 A - B C - A 1 的余弦值.
某单位招聘面试,每次从试题库随机调用一道试题,若调用的是类型试题,则使用后该试题回库,并增补一道类试题和一道类型试题入库,此次调题工作结束;若调用的是类型试题,则使用后该试题回库,此次调题工作结束。试题库中现共有道试题,其中有道类型试题和道类型试题,以表示两次调题工作完成后,试题库中类试题的数量。 (Ⅰ)求的概率; (Ⅱ)设,求的分布列和均值(数学期望)。
设函数 f x = 2 2 cos 2 x + π 4 + s in 2 x
(I)求函数 f x 的最小正周期; (II)设函数 g x 对任意 x ∈ R ,有 g x + π 2 = g x ,且当 x ∈ 0 , π 2 时, g x = 1 2 - f x ,求函数 g x 在 - π , 0 上的解析式。
函数(1)如果函数单调减区调为,求函数解析式;(2)在(1)的条件下,求函数图象过点的切线方程;(3)若,使关于的不等式成立,求实数取值范围.
已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.(1)求椭圆标准方程;(2)设点,且,求直线方程.