设函数 f x = 2 2 cos 2 x + π 4 + s in 2 x
(I)求函数 f x 的最小正周期; (II)设函数 g x 对任意 x ∈ R ,有 g x + π 2 = g x ,且当 x ∈ 0 , π 2 时, g x = 1 2 - f x ,求函数 g x 在 - π , 0 上的解析式。
设向量,其中为实数. (Ⅰ)若,且求的取值范围; (Ⅱ)若求的取值范围.
已知数列的前项和满足. (Ⅰ)求数列的通项公式; (Ⅱ)设,且数列为等比数列. ①求的值; ②若,求数列的前和.
如图所示,正方形所在的平面与等腰所在的平面互相垂直,其中顶,,为线段的中点. (Ⅰ)若是线段上的中点,求证:// 平面; (Ⅱ)若是线段上的一个动点,设直线与平面所成角的大小为,求的最大值.
锐角的内角的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)若,求的面积.
给定函数和常数,若恒成立,则称为函数的一个“好数对”;若恒成立,则称为函数的一个“类好数对”.已知函数的定义域为. (Ⅰ)若是函数的一个“好数对”,且,求; (Ⅱ)若是函数的一个“好数对”,且当时,,求证: 函数在区间上无零点; (Ⅲ)若是函数的一个“类好数对”,,且函数单调递增,比较与的大小,并说明理由.