平面图形 A B B 1 A 1 C 1 C 如图所示,其中 B B 1 C 1 C 是矩形, B C = 2 , B B 1 = 4 , A B = A C = 2 , A 1 B 1 = A 1 C 1 = 5 。现将该平面图形分别沿 B C 和 B 1 C 1 折叠,使 △ A B C 与 △ A 1 B 1 C 1 所在平面都与平面 B B 1 C 1 C 垂直,再分别连接 A A 1 , B A 1 , C A 1 ,得到如图2所示的空间图形,对此空间图形解答下列问题
(Ⅰ)证明: A A 1 ⊥ B C ; (Ⅱ)求 A A 1 的长; (Ⅲ)求二面角 A - B C - A 1 的余弦值.
(本小题满分10分)在如图所示的多面体中,四边形为正方形,四边形是直角梯形,,平面,. (1)求证:平面; (2)求平面与平面所成的锐二面角的大小.
【改编】已知函数. (1)当时,求的值域; (2)设三内角所对边分别为且,求在上的值域.
(本小题满分7分)选修4—5:不等式选讲 已知函数,,且的解集为. (Ⅰ)求的值; (Ⅱ)若,且,求 的最小值.
(本小题满分7分)《选修4-4:坐标系与参数方程》 在极坐标系中,圆的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系. (Ⅰ)求圆的直角坐标方程; (Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
(本小题满分7分)选修4—2:矩阵与变换 如图,单位正方形区域在二阶矩阵的作用下变成平行四边形区域. (Ⅰ)求矩阵; (Ⅱ)求,并判断是否存在逆矩阵?若存在,求出它的逆矩阵.