(本小题共14分)在如图的多面体中,⊥平面,,,,,,,是的中点.(Ⅰ) 求证:平面;(Ⅱ) 求证:;(Ⅲ) 求二面角的余弦值.
以平面直角坐标系的原点为极点,轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点的极坐标为,直线过点且与极轴成角为,圆的极坐标方程为. (1)写出直线参数方程,并把圆的方程化为直角坐标方程; (2)设直线与曲线圆交于、两点,求的值.
如图,是⊙的直径,是弦,的平分线交⊙于点,,交的延长线于点,交于点. (1)求证:是⊙的切线; (2)若,求的值
已知函数,(为自然对数的底数) (1)求函数的最小值; (2)若对任意的恒成立,求实数的值; (3)在(2)的条件下,证明:
已知数列是递增的等比数列,且 (1)求数列的通项公式; (2)设为数列的前n项和,,求数列的前n项和。
甲、乙两地相距千米,汽车从甲地匀速行驶到乙地,速度不得超过千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为,固定部分为元, (1)把全程运输成本(元)表示为速度(千米/时)的函数,指出定义域; (2)为了使全程运输成本最小,汽车应以多大速度行驶?全程运输成本最小是多少?