(本小题共13分)已知函数,(Ⅰ)若,求函数的极值;(Ⅱ)设函数,求函数的单调区间;(Ⅲ)若在()上存在一点,使得成立,求的取值范围
选修4—2:矩阵与变换 (本小题满分10分)已知矩阵,,试计算:.
如图,是⊙的一条切线,切点为,,,都是⊙的割线,已知.求证:(1);(2).
(本小题满分16分)已知数列是各项均为正数的等差数列.(1)若,且,,成等比数列,求数列的通项公式;(2)在(1)的条件下,数列的前和为,设,若对任意的,不等式恒成立,求实数的最小值;(3)若数列中有两项可以表示为某个整数的不同次幂,求证:数列 中存在无穷多项构成等比数列.
(本小题满分16分)已知函数.(1)当时,若函数在上为单调增函数,求的取值范围;(2)当且时,求证:函数f (x)存在唯一零点的充要条件是;(3)设,且,求证:<.
(本小题满分16分)已知直线:与直线:. (1)当实数变化时,求证:直线过定点,并求出这个定点的坐标;(2)若直线通过直线的定点,求点所在曲线的方程;(3)在(2)的条件下,设,过点的直线交曲线于两点(两点都在轴上方),且,求此直线的方程.