(本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为,求的分布列;(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.
.(本小题满分12分)已知函数.(Ⅰ)求函数的最大值,并写出取最大值时的取值集合;(Ⅱ)已知中,角的对边分别为若求实数的最小值.
(本小题满分10分)选修4—5:不等式选讲设函数= + 1.(Ⅰ)画出函数y=的图像:(Ⅱ)若不等式≤ax的解集非空,求n的取值范围
(本小题满分10分)选修4—4;坐标系与参数方程.在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点.(I)求曲线,的方程;(II)若点,在曲线上,求的值.
(本小题满分10分)选修4—1;几何证明选讲.如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上.(Ⅰ)若,求的值;(Ⅱ)若,证明:.
已知函数,(Ⅰ)当时,求函数的单调递增区间;(Ⅱ)在区间内至少存在一个实数,使得成立,求实数的取值范围.