已知向量=(2sinx,cosx),=(sinx,2sinx),函数f(x)=·.(1)求f(x)的单调递增区间;(2)若不等式f(x)≥m对x∈[0,]都成立,求实数m的最大值.
(2)(本小题满分7分)选修4—4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),若圆在以该直角坐标系的原点为极点、轴的正半轴为极轴的极坐标系下的方程为. (Ⅰ)求曲线的普通方程和圆的直角坐标方程; (Ⅱ)设点是曲线上的动点,点是圆上的动点,求的最小值.
(1)(本小题满分7分)选修4—2:矩阵与变换 已知二阶矩阵有特征值及对应的一个特征向量. (Ⅰ)求矩阵; (Ⅱ)设曲线在矩阵的作用下得到的方程为,求曲线的方程.
(本小题满分14分) 已知函数的极值点为和. (Ⅰ)求实数,的值; (Ⅱ)试讨论方程根的个数; (Ⅲ)设,斜率为的直线与曲线交于两点,试比较与的大小,并给予证明.
.(本小题满分13分) 某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元. 在演出过程中穿插抽奖活动.第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数,(,),随即按如右所示程序框图运行相应程序.若电脑显示“中奖”,则抽奖者获得9000元奖金;若电脑显示“谢谢”,则不中奖. (Ⅰ)已知小曹在第一轮抽奖中被抽中, 求小曹在第二轮抽奖中获奖的概率; (Ⅱ)若小叶参加了此次活动,求小叶参加此次活动收益的期望; (Ⅲ)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款.问该慈善机构此次募捐是否能达到预期目标.
.(本小题满分13分) 已知椭圆的焦点为,, 离心率为,直线与轴,轴分别交于点,. (Ⅰ)若点是椭圆的一个顶点,求椭圆的方程; (Ⅱ)若线段上存在点满足,求的取值范围.