(本小题满分12分)某校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望.
已知函数。 (Ⅰ)求函数的图像在处的切线方程; (Ⅱ)求的最大值;(Ⅲ)设实数,求函数在上的最小值
已知直线与椭圆相交于、两点.(1)若椭圆的离心率为,焦距为,求线段的长;(2)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆长轴长的最大值.
我校高三年级进行了一次水平测试.用系统抽样的方法抽取了50名学生的数学成绩,准备进行分析和研究.经统计成绩的分组及各组的频数如下:[40,50), 2; [50,60), 3; [60,70), 10; [70,80), 15; [80,90), 12; [90,100], 8.(Ⅰ)完成样本的频率分布表;画出频率分布直方图.(Ⅱ)估计成绩在85分以下的学生比例;(Ⅲ)请你根据以上信息去估计样本的众数、中位数、平均数.(精确到0.01)
如图,在四棱锥中,底面是且边长为的菱形,侧面是等边三角形,且平面⊥底面,为的中点.(1)求证:PD;(2)求 点G到平面PAB的距离。
已知等差数列的前项和满足,.(1)求的通项公式; (2)求数列的前项和.