设数列的前项和为 已知(I)设,证明数列是等比数列; (II)求数列的通项公式.
在数列中,,且.(Ⅰ) 求,猜想的表达式,并加以证明;(Ⅱ)设,求证:对任意的自然数都有.
已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.
已知展开式各项系数的和比它的二项式系数的和大992.(Ⅰ)求n;(Ⅱ)求展开式中的项;(Ⅲ)求展开式系数最大项.
观察(1);(2);(3).请你根据上述规律,提出一个猜想,并证明.
有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(Ⅰ)甲不在中间也不在两端;(Ⅱ)甲、乙两人必须排在两端;(Ⅲ)男、女生分别排在一起;(Ⅳ)男女相间;(Ⅴ)甲、乙、丙三人从左到右顺序保持一定.