以下茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值; (2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望,
如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,∠CDA=45°.(Ⅰ)求证:平面PAB⊥平面PAD;(Ⅱ)设AB=AP.(ⅰ) 若直线PB与平面PCD所成的角为30°,求线段AB的长;(ⅱ) 在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由.
等差数列{}的各项均为正数,=3,前项和为,等比数列{}中,=1,=64,{}是公比为64的等比数列.(Ⅰ)求与;(Ⅱ)证明:+++…+<.
在斜三角形ABC中,角A,B,C的对边分别为a,b,c.(Ⅰ)若2sin Acos C=sin B,求的值;(Ⅱ)若sin(2A+B)=3sin B,求的值.
有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一排组成.
设随机变量ξ表示密码中不同数字的个数. (Ⅰ)求P(ξ=2); (Ⅱ)求随机变量ξ的分布列和它的数学期望.
一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求+2的概率.