如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由. 解:∵∠1=∠2(已知),∠2=∠DGF( ) ∴∠1=∠DGF ∴BD∥CE( ) ∴∠3+∠C=180º( ) 又∵∠3=∠4(已知) ∴∠4+∠C=180º ∴ ∥ (同旁内角互补,两直线平行) ∴∠A=∠F( )
五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处.从A处看房屋顶部C处的仰角为,看房屋底部D处的俯角为,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.
若关于x的一元二次方程的两个实数根为、,且满足,试求出方程的两个实数根及k的值.
计算:.
如图1,矩形,为原点,点在上,把沿折叠,使点落在边上的点处,A、D坐标分别为和,抛物线过点.(1)求点的坐标及该抛物线的解析式;(2)如图2,矩形的长、宽一定,点沿(1)中的抛物线滑动,在滑动过程中轴,且在的下方,当点横坐标为-1时,点位于轴上方且距离轴个单位.当矩形在滑动过程中被轴分成上下两部分的面积比为2:3时,求点的坐标;(3)如图3,动点同时从点出发,点以每秒3个单位长度的速度沿线段运动,点以每秒8个单位长度的速度沿折线按的路线运动,当中的其中一点停止运动时,另一点也停止运动.设同时从点出发秒时,的面积为.求与的函数关系式,并写出的取值范围.
阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=900,点P在BC边上,当∠APD=900时,易证∽,从而得到,解答下列问题.(1)模型探究1:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时, 结论仍成立吗? 试说明理由;(2)拓展应用:如图3,M为AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°且DM交AC于F,ME交BC于G.AB=,AF=3,求FG的长.