某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为,圆心角为(弧度).(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?
在中,角所对的边分别为,已知, (Ⅰ)求的大小; (Ⅱ)若,求的取值范围.
已知函数的定义域为. (I)求函数在上的最小值; (Ⅱ)对,不等式恒成立,求的取值范围.
已知正项数列的前项和为,是与的等比中项. (1)求证:数列是等差数列; (2)若,且,求数列的通项公式; (3)在(2)的条件下,若,求数列的前项和.
在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线与交于两点. (1)写出的方程; (2) ,求的值.
在三棱拄中,侧面,已知,,. (Ⅰ)求证:平面; (Ⅱ)试在棱(不包含端点)上确定一点的位置,使得; (Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.