((本小题满分12分)如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
已知函数。 (Ⅰ)求函数的单调区间与极值; (Ⅱ)若对于任意,恒成立,求实数的取值范围。
已知二次函数经过点 (1)求的解析式; (2)当时,求的最小值。
是R上的偶函数,,在,则。
(本小题满分12分) 已知函数(是自然对数的底数,). (1)当时,求的单调区间; (2)若在区间上是增函数,求实数的取值范围; (3)证明对一切恒成立.
(本小题满分12分) 已知椭圆的离心率为,直线经过椭圆的上顶点和右顶点,并且和圆相切. (1)求椭圆的方程; (2)设直线与椭圆相交于,两点,以线段, 为邻边作平行四边行,其中顶点在椭圆上,为坐标原点,求的取值范围.