某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
一个多面体的直观图和三视图(正视图、左视图、俯视图)如图所示,M、N分别为A1B、B1C1的中点.求证: (1)MN∥平面ACC1A1; (2)MN⊥平面A1BC.
在四面体ABCD中,CB=CD,AD⊥BD,且E,F分别是AB,BD的中点,求证:(1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.
如图所示,已知长方体ABCD—A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C. (1)求CE的长; (2)求证:A1C⊥平面BED; (3)求A1B与平面BDE所成角的正弦值.
如图所示,在三棱锥P—ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点, OP⊥底面ABC. (1)若k=1,试求异面直线PA与BD所成角余弦值的大小; (2)当k取何值时,二面角O—PC—B的大小为?
如图所示,在三棱柱ABC—A1B1C1中,四边形A1ABB1是菱形,四边形BCC1B1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°. (1)求证:平面CA1B⊥平面A1ABB1; (2)求直线A1C与平面BCC1B1所成角的正切值; (3)求点C1到平面A1CB的距离.