某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
(本题12分) 已知数列的前项和满足,等差数列满足,。 (1)求数列、的通项公式; (2)设,数列的前项和为,问>的最小正整数是多少?
(本题10分) 设三角形的内角的对边分别为,. (1)求边的长;(2)求角的大小。
(本小题满分14分) 已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍,且经过点(2,1),平行于直线在轴上的截距为,设直线交椭圆于两个不同点、, (1)求椭圆方程; (2)求证:对任意的的允许值,的内心在定直线。
已知函数成等差数列,点是函数图像上任意一点,点关于原点的对称点的轨迹是函数的图像。 (1)解关于的不等式; (2)当时,总有恒成立,求的取值范围。
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点. (1)当时,求平面与平面的夹角的余弦值; (2)当为何值时,在棱上存在点,使平面?