已知等比数列中,,,,分别为△ABC的三个内角A,B,C的对边,且.(1)求数列的公比;(2)设集合,且,求数列的通项公式.
在平面直角坐标系中,已知点及直线,曲线是满足下列两个条件的动点的轨迹:①其中是到直线的距离;②(1) 求曲线的方程;(2) 若存在直线与曲线、椭圆均相切于同一点,求椭圆离心率的取值范围.
已知数列的前项和为记(1)若数列是首项与公差均为的等差数列,求;(2)若且数列均是公比为的等比数列,求证:对任意正整数,
如图,四边形是正方形,平面,,,,,分别为,,的中点.(1)求证:平面;(2)求平面与平面所成锐二面角的大小.
盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响). (1)求事件 “在一次试验中,得到的数为虚数”的概率与事件 “在四次试验中,至少有两次得到虚数” 的概率;(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望
在中,三个内角所对的边分别为已知,.(1)求;(2)设求的值.