一个袋中装有8个大小质地相同的球,其中4个红球、4个白球,现从中任意取出四个球,设为取得红球的个数.(1)求的分布列;(2)若摸出4个都是红球记5分,摸出3个红球记4分,否则记2分.求得分的期望.
如图,一面旗帜由部分构成,这部分必须分别着上不同的颜色,现有红、黄、蓝、黑四种颜色可供选择,利用树状图列出所有可能结果,并计算下列事件的概率: (1)红色不被选中; (2)第部分是黑色并且第部分是红色.
对一批衬衣进行抽检,结果如下表: (1)完成上面统计表; (2)事件为任取一件衬衣为次品,求; (3)为了保证买到次品的顾客能够及时更换,销售件衬衣,至少需要进货多少件衬衣?
给定整数,证明:存在n个互不相同的正整数组成的集合S,使得对S的任意两个不同的非空子集A,B,数与 是互素的合数.(这里与分别表示有限数集的所有元素之和及元素个数.)
凸边形中的每条边和每条对角线都被染为n种颜色中的一种颜色.问:对怎样的n,存在一种染色方式,使得对于这n种颜色中的任何3种不同颜色,都能找到一个三角形,其顶点为多边形的顶点,且它的3条边分别被染为这3种颜色?
给定整数,实数满足.求的最小值.