直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.(Ⅰ)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长.
如图,三棱锥中,底面, ,,点、分别是、的中点. (Ⅰ)求证:⊥平面;(Ⅱ)求二面角的大小.
(本小题满分12分)在中,已知内角A、B、C所对的边分别为a、b、c,向量,,且。(I)求锐角B的大小;(II)如果,求的面积的最大值。
(本小题满分14分)已知递增数列满足:, ,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足: ,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为, ,。当时,试比较A与B的大小。
(本小题满分12分)已知函数(为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.