直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.(Ⅰ)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长.
(本小题满分14分)已知函数. (1)当时,求函数的单调递增区间;(2)是否存在,使得对任意的,都有,若存在,求的范围;若不存在,请说明理由.
.(本小题满分12分)已知椭圆的中心在坐标原点,焦点在轴上,该椭圆经过点,且离心率为.(1)求椭圆的标准方程;(2)若直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
.(本小题满分12分)已知:数列与-3的等差中项。 (1)求;(2)求数列的通项公式.
(本小题满分12分)某班全部名学生在一次百米测试中,成绩全部介于13秒和18秒之间。将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],表是按上述分组方式得到的频率分布表。
(1)求及上表中的的值;(2)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“”的概率.
.(本小题满分12分)如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.(1)求证:DC平面ABC;(2)设,求三棱锥A-BFE的体积.