已知椭圆 C : 9 x 2 + y 2 = m 2 ( m > 0 ) ,直线 l 不过原点 O 且不平行于坐标轴, l 与 C 有两个交点 A , B ,线段 A B 的中点为 M . (Ⅰ)证明:直线 O M 的斜率与 l 的斜率的乘积为定值; (Ⅱ)若 l 过点 ( m 3 , m ) ,延长线段 O M 与 C 交于点 P ,四边形 O A P B 能否为平行四边形?若能,求此时 l 的斜率,若不能,说明理由.
高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.
函数 ()的部分图像如右所示.(1)求函数的解析式;(2)设,且,求的值.
动圆M过定点A(-,0),且与定圆A´:(x-)2+y2=12相切. (1)求动圆圆心M的轨迹C的方程; (2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.
已知函数.(1)求在区间上的最大值;(2)若函数在区间上存在递减区间,求实数m的取值范围.
已知命题:方程无实根,命题:方程是焦点在轴上的椭圆.若与同时为假命题,求的取值范围.