已知椭圆 C : 9 x 2 + y 2 = m 2 ( m > 0 ) ,直线 l 不过原点 O 且不平行于坐标轴, l 与 C 有两个交点 A , B ,线段 A B 的中点为 M . (Ⅰ)证明:直线 O M 的斜率与 l 的斜率的乘积为定值; (Ⅱ)若 l 过点 ( m 3 , m ) ,延长线段 O M 与 C 交于点 P ,四边形 O A P B 能否为平行四边形?若能,求此时 l 的斜率,若不能,说明理由.
如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,D是BC的中点,. (Ⅰ)求证:平面; (Ⅱ)求点C到平面的距离.
某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:,,,,. (Ⅰ)求图中的值; (Ⅱ)根据直方图,估计这100名学生语文成绩的平均分; (Ⅲ)若这100名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,求数学成绩在之外的人数.
已知函数,则下列结论中正确的是 ()
已知函数的图象在点处的切线方程为y=x-1. (Ⅰ)用a表示出b,c; (Ⅱ)若在上恒成立,求的取值范围.