已知函数.(1)求在区间上的最大值;(2)若函数在区间上存在递减区间,求实数m的取值范围.
已知命题:, 不等式恒成立;命题:只有一个实数满足不等式,若命题“p或q”是真命题,“非q”是真命题,求实数a的取值范围.
((本小题满分14分)已知函数的极大值点为.(1)用实数来表示实数,并求的取值范围;(2)当时,的最小值为,求的值;(3)设,两点的连线斜率为.求证:必存在,使.
(本小题满分12分)已知椭圆C的左、右焦点坐标分别是,,离心率是,直线椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。(1)求椭圆C的方程;(2)若圆P经过原点,求的值;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
(、(本小题满分12分)已知椭圆的中心在原点,焦点,且经过点(1)求椭圆的方程;(2)设、是直线:上的两个动点,点与点关于原点对称,若,求的最小值。
((本小题满分12分)某洗衣机生产厂家有A、B两种型号的洗衣机参加家电下乡活动。若厂家投放A、B型号洗衣机的价值分别为万元,农民购买获得的补贴分别为万元。已知厂家把总价值为10万元的A、B两种型号洗衣机投放市场,且A、B两型号的洗衣机投放金额都不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值(精确到,参考数据:)