高一(1)班参加校生物竞赛学生成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛人数及分数在之间的频数,并计算频率分布直方图中 间的矩形的高;(2)若要从分数在之间的学生中任选两人进行某项研究,求至少有一人分数在之间的概率.
(本小题满分12分)已知函数 (1)当时,求函数的最小值和最大值; (2)设的内角的对应边分别为,且,若向量与向量共线,求的值.
已知为实数,函数. (1)当时,求在处的切线方程; (2)定义:若函数的图象上存在两点、,设线段的中点为,若在点处的切线与直线平行或重合,则函数是“中值平衡函数”,切线叫做函数的“中值平衡切线”.试判断函数是否是“中值平衡函数”?若是,判断函数的“中值平衡切线”的条数;若不是,说明理由; ()设,若存在,使得成立,求实数的取值范围.
设. (1)若函数在上为单调函数,求实数的取值范围; (2)设. ①证明:函数有3个零点; ②若存在实数,当时函数的值域为,求实数的取值范围.
如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域内建两个圆形花坛,该扇形的圆心角为变量,其中半径较大的花坛内切于扇形,半径较小的花坛与外切,且与、相切. (1)求半径较大的花坛的半径(用表示); (2)求半径较小的花坛的半径的最大值.
在锐角中,角的对边分别为,已知. (1)若,求; (2)求的取值范围.