已知函数f(x)=lnx-(x-1)22. (Ⅰ)求函数f(x)的单调递增区间; (Ⅱ)证明:当x>1时,f(x)<x-1; (Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1).
、设集合,,且.(1)求的值;(2)求函数的单调递增区间,并证明.
(7分)已知集合,,,全集为实数集R.(1)求;(2)求;(3)如果,求a的取值范围。
(本小题满分14分)在中,角所对的边分别为,且成等差数列.(Ⅰ)求角的大小(Ⅱ)若,求边上中线长的最小值
(满分12分)) 设椭圆E: (a,b>0)过(2,) ,(,1)两点,O为坐标原点.(Ⅰ)求椭圆E的方程(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由
(满分12分)设等比数列的各项均为正值,首项,前n项和为,且(Ⅰ)求的通项;(Ⅱ)求的前n项和.