已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.
在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.
在极坐标系中,求曲线ρ=cosθ+1与ρcosθ=1的公共点到极点的距离.
已知圆的极坐标方程为ρ=4cosθ,圆心为C,点P的极坐标为,求|CP|.
在极坐标系中,求圆ρ=2cosθ的垂直于极轴的两条切线方程.
在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.