如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=BC. 点E、F分别是棱PB、边CD的中点.(1)求证:AB⊥面PAD;(2)求证:EF∥面PAD.
数列中,a1=2,an+1=an+cn(c是常数,n=1,2,3……)且a1,a2,a3成公比不为1的等比数列(Ⅰ)求c的值(Ⅱ)求的通项公式
设△ABC的内角A、B、C的对边分别为a、b、c,已知b2+c2=a2+bc,求:(Ⅰ)A的大小(Ⅱ)2sinBcosc-sin(B-C)的值
已知抛物线方程,过点作抛物线的两条切线,切点分别为.(Ⅰ)求证直线过定点;(Ⅱ)求△(为坐标原点)面积的最小值.
如图,已知四棱锥的底面为矩形,且平面分别为的中点.(Ⅰ)求证:;(Ⅱ)求二面角的大小值.