某渔业公司年初用49万元购买一艘捕鱼船,第一年各种费用6万元,以后每年都增加2万元,每年捕鱼收益25万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以18万元出售该渔船;②总纯收入获利最大时,以9万元出售该渔船.问哪种方案最合算?
((本小题满分12分) 已知曲线上任意一点到两个定点和的距离之和为4. (1)求曲线的方程; (2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.
(.(12分)设椭圆:的左、右焦点分别是,下顶点为,线段的中点为(为坐标原点),如图.若抛物线:与轴的交点为,且经过点. (1)求椭圆的方程; (2)设,为抛物线上的一动点,过点作抛物线的切线交椭圆于两点,求面积的最大值.
( (12分)直四棱柱中,底面是等腰梯形,,,为的中点,为中点. (1) 求证:; (2) 若,求与平面所成角的大小.
(12分)某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试通过与否相互独立.规定:若前4次都没有通过测试,则第5次不能参加测试. (1)求该学生考上大学的概率; (2)如果考上大学或参加完5次考试就结束,求该生至少参加四次考试的概率.
(10分)已知数列的前项和,。 (1)求数列的通项公式; (2)记,求