(本题满分10分,第1小题5分,第2小题5分)等比数列{an}的前n项的和为Sn,已知S1,S3,S2成等差数列.(1)求{an}的公比q;(2)若a1-a3=3,求.
(本小题满分12分)改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村 到年十年间每年考入大学的人数.为方便计算,年编号为,年编号为,…,年编号为.数据如下: (Ⅰ)从这年中随机抽取两年,求考入大学人数至少有年多于人的概率;(Ⅱ)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值.
(本小题满分12分)已知三棱柱,底面三角形为正三角形,侧棱底面, ,为的中点,为中点.(Ⅰ) 求证:直线平面;(Ⅱ)求平面和平面所成的锐二面角的余弦值.
(本小题满分12分)已知函数.(Ⅰ) 求函数的单调递增区间;(Ⅱ) 已知中,角所对的边长分别为,若,,求的面积.
(满分8分)已知是实数,函数。(I)若,求的值;(II)在(1)的条件下,求曲线在点处的切线方程; (III)求在区间上的最大值。
(满分6分)已知函数,且。(I)求;(II)判断的奇偶性;(III)函数在上是增函数还是减函数?并证明你的结论。