如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.(1)当点M是EC中点时,求证:BM//平面ADEF;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积
函数(A>0,>0)的最小值为-1,其图象相邻两个对称中心之间的距离为. (1)求函数的解析式 (2)设,则,求的值.
已知函数. (Ⅰ)求函数的最小值; (Ⅱ)求证:; (Ⅲ)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设函数,,与是否存在“分界线”?若存在,求出的值;若不存在,请说明理由.
设函数对任意,都有,当时, (1)求证:是奇函数; (2)试问:在时,是否有最大值?如果有,求出最大值,如果没有,说明理由. (3)解关于x的不等式
(1)求 (2).
已知函数的图象在与轴交点处的切线方程是. (I)求函数的解析式; (II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.