如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,,. (1)求证:平面⊥平面; (2)求点C到平面的距离; (3)求PC与平面PAD所成的角的正弦值。
(12分)已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),且非p是非q的必要不充分条件,求实数m的取值范围.
(12分)(2010·徐州模拟)已知f(x)=x2-2x+1,g(x)是一次函数,且f[g(x)]=4x2,求g(x)的解析式.
(本小题满分13分)已知的图像在点处的切线与直线平行.(1)求a,b满足的关系式;(2)若上恒成立,求a的取值范围;(3)证明:
(本小题满分12分)已知椭圆过点A(a,0),B(0,b)的直线倾斜角为,原点到该直线的距离为.(1)求椭圆的方程;(2)斜率小于零的直线过点D(1,0)与椭圆交于M,N两点,若求直线MN的方程;(3)是否存在实数k,使直线交椭圆于P、Q两点,以PQ为直径的圆过点D(1,0)?若存在,求出k的值;若不存在,请说明理由。
(本小题满分13分)已知函数,数列满足(1)若数列是常数列,求t的值;(2)当时,记,证明:数列是等比数列,并求出通项公式an.