如图,设椭圆:的离心率,顶点的距离为,为坐标原点.(1)求椭圆的方程;(2)过点作两条互相垂直的射线,与椭圆分别交于两点.(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;(ⅱ)求的最小值.
已知曲线C的极坐标方程是ρ=2sin θ,直线l的参数方程是 (t为参数).(1)将曲线C的极坐标方程化为直角坐标方程;(2)设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.
在极坐标系中,圆C的方程为ρ=2 sin ,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为 (t为参数),判断直线l和圆C的位置关系.
在平面直角坐标系xOy中,直线x+y+2=0在矩阵M=对应的变换作用下得到直线m:x-y-4=0,求实数a,b的值.
求矩阵的特征值及对应的特征向量.
如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求线段AE的长.