如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求平面与平面所成锐角的余弦值.
某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.(1)求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(2)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.
等差数列{}足:,,其中为数列{}前n项和.(1)求数列{}通项公式;(2)若,且,,成等比数列,求k值.
已知函数满足对任意实数都有成立,且当时,,.(1)求的值;(2)判断在上的单调性,并证明;(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。试证明:在处连续.
已知函数,.(1)若且,试讨论的单调性;(2)若对,总使得成立,求实数的取值范围.
设抛物线的焦点为,其准线与轴的交点为,过点的直线交抛物线于两点.(1)若直线的斜率为,求证:;(2)设直线的斜率分别为,求的值.