已知数列{an}中,a1=1,an+1= (n∈N*).(1)求证: 数列 {+ }是等比数列,并求数列{an}的通项an(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
.求的展开式中的常数项和有理项.
(本小题满分12分) 已知椭圆的长轴长为,且点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)过椭圆右焦点的直线交椭圆于两点,若以为直径的圆过原点, 求直线方程.
.(本小题满分12分) 如图,在正方体中,E、F分别是中点。 (Ⅰ)求证:; (Ⅱ)求证:; (III)棱上是否存在点P使,若存在,确定点P位置;若不存在,说明理由。
.(本小题满分12分) 已知函数f(x)=lg(ax-bx)(a>1>b>0). (1)求y=f(x)的定义域; (2)在函数y=f(x)的图象上是否存在不同的两点,使得过这两点的直线平行于x轴; (3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值.