已知曲线C1:(为参数),曲线C2:(t为参数).(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线.写出的参数方程.与公共点的个数和C公共点的个数是否相同?说明你的理由.
如图,从圆外一点作圆的两条切线,切点分别为,与交于点,设为过点且不过圆心的一条弦,求证:四点共圆.
设为关于n的k次多项式.数列{an}的首项,前n项和为.对于任意的正整数n,都成立. (1)若,求证:数列{an}是等比数列; (2)试确定所有的自然数k,使得数列{an}能成等差数列
若函数为定义域上单调函数,且存在区间(其中),使得当时,的取值范围恰为,则称函数是上的正函数,区间叫做等域区间. (1)已知是上的正函数,求的等域区间; (2)试探究是否存在实数,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由
如图,某兴趣小组测得菱形养殖区的固定投食点到两条平行河岸线的距离分别为4m、8m,河岸线与该养殖区的最近点的距离为1m,与该养殖区的最近点的距离为2m. (1)如图甲,养殖区在投食点的右侧,若该小组测得,请据此算出养殖区的面积; (2)如图乙,养殖区在投食点的两侧,试在该小组未测得的大小的情况下,估算出养殖区的最小面积.
在△ABC中,角A,B,C的对边分别是a,b,c,且. (1)求的值; (2)试判断△ABC的形状,并说明理由