直线与轴交于点C(4,0),与轴交于点B,并与双曲线交于点。(1)求直线与双曲线的解析式。(2)连接OA,求的正弦值。(3)若点D在轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由。
关于x的一元二次方程x2-(m-1)x+2m-1=0: (1)若其根的判别式为-20,求m的值; (2)设该方程的两个实数根为x1 ,x2 ,且x12+x22=10,求m的值.
如图,在△ABC中,∠B=45°,∠C=60°,AB=3,AD⊥BC于D,求DC.
(1)解方程: (2)计算:
如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0). (1)求点B的坐标; (2)已知a=1,C为抛物线与y轴的交点. ①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标; ②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
某体育休闲超市购进一种成本为20元/个的风筝,据市场调查分析,若按25元/个销售,一个月能售出70个,在此基础上,售价每涨1元/个,月销售量就减少2个.设这种风筝的销售单价为x(元/个),该超市每月销售这种风筝的所获得的利润为y(元),针对这种风筝的销售情况,请解答下列问题: (1)用含x的代数式分别表示出每个风筝的销售利润为 元,每月卖出的风筝的个数是 个; (2)求y与x之间的函数关系式; (3)若该超市想在每月销售这种风筝的成本不超过800元的情况下,使得月销售利润达到600元,则每个风筝的售价应定为多少元?