某班毕业联欢会设计了即兴表演节目的模球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球。这些除数字外,其它完全相同,游戏规则是:参加联欢会的50名同学,每人将盒子里的五个乒乓球摇匀后,闭上眼睛从中随机地一次摸出两个球(每位同学必须且只能摸一次)。若两个球上的数字之和为偶数,就给大家即兴表演一个节目;否则,下一个同学接着做摸球游戏,依次进行。(1)用列表法或画树状图法求参加联欢会的某位同学即兴表演节目的概率;(2)估计本次联欢会上有多少名同学即兴表演节目?
如图,用一根6米长的笔直钢管弯折成如图所示的路灯杆ABC,AB垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=5.5米,求AB长.
如图,在平行四边形ABCD中,点G是BC延长线上一点,AG与BD交于点E,与DC交于点F,如果AB=m,CG=BC,求: (1)DF的长度; (2)三角形ABE与三角形FDE的面积之比.
已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度). (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是_________ ; (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是_________ ; (3)△A2B2C2的面积是_________ 平方单位.
(本题10分)已知△ABC为等边三角形,点D为直线BC上一动点(点D不与点B、点C重合).以AD为边作等边三角形ADE,连接CE. (1)如图,当点D在边BC上时.①求证:△ABD≌△ACE;②直接判断结论BC=DC+CE是否成立(不需证明); (2)、如图,当点D在边BC的延长线上时,其他条件不变,请写出BC、DC、CE之间存在的数量关系,并写出证明过程.
(本题6分) 某厂接到在规定时间内生产1500台冰箱的任务.在生产了300台冰箱后,厂家把工作效率提高到原来的1.5倍,于是提前4天完成任务,求原来每天生产多少台冰箱?