如图所示, 四棱锥P-ABCD的底面是边长为1的正方形,PA^CD,PA = 1,PD=,E为PD上一点,PE = 2ED. (1)求证:PA ^平面ABCD; (2)求二面角D-AC-E的余弦值; (3)在侧棱PC上是否存在一点F,使得BF // 平面AEC? 若存在,指出F点的位置,并证明;若不存在,说明理由.
设数列的前项和为,若对任意,都有. ⑴求数列的首项; ⑵求证:数列是等比数列,并求数列的通项公式; ⑶数列满足,问是否存在,使得恒成立?如果存在,求出的值,如果不存在,说明理由.
在中,内角对边的边长分别是,已知,. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
已知数列的前项和,数列满足 (1)求数列的通项公式;(2)求数列的前项和; (3)求证:不论取何正整数,不等式恒成立
在中,三个内角所对的边分别是 已知 (1)若,求外接圆的半径 (2)若边上的中线长为,求的面积。
数列中,,, (1)若为公差为11的等差数列,求; (2)若是以为首项、公比为的等比数列,求的值,并证明对任意总有: