(本小题满分13分)已知椭圆()的右焦点为,离心率为.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线与椭圆相交于,两点,分别为线段的中点. 若坐标原点在以为直径的圆上,且,求的取值范围.
(1)(本小题满分7分)选修4-2:矩阵与变换 已知矩阵,其中,若点在矩阵的变换下得到点, (Ⅰ)求实数a的值;(Ⅱ)求矩阵的特征值及其对应的特征向量. (2)(本小题满分7分)选修4-4:坐标系与参数方程 已知直线的极坐标方程为,圆的参数方程为 (其中为参数). (Ⅰ)将直线的极坐标方程化为直角坐标方程; (Ⅱ)求圆上的点到直线的距离的最小值.
(本小题满分14分) 已知,,. (Ⅰ)当时,求的单调区间; (Ⅱ)求在点处的切线与直线及曲线所围成的封闭图形的面积; (Ⅲ)是否存在实数,使的极大值为3?若存在,求出的值,若不存在,请说明理由.
(本小题满分13分)(1)已知a>0且a1常数,求函数定义 域和值域; (2)已知命题P:函数在上单调递增;命题Q:不等式对任意实数恒成立;若是真命题,求实数的取值范 围
(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层. 某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热 层建造费用与20年的能源消耗费用之和.(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用达到最小?并求最小值。
(本小题满分13分)已知定义域为的函数是奇函数. (1)求的值;(2)判断函数的单调性; (3)若对任意的,不等式恒成立,求k的取值范围.